

Best Practices – Expected Failure Modes

Speaker: John Bernet, CMRP, Application and Product Specialist

Meet the Speakers

John Bernet, CMRP

- Mechanical Reliability Application Specialist at Fluke Corp. (10 years)
- Previously worked at Azima DLI for 18 years
- Served 12 years in U.S. Navy on cruiser & aircraft carrier as electrical technician
- Has 30+ years of experience in preventive and predictive maintenance
- Written many technical articles for global trade publications and a 240-page vibration training program

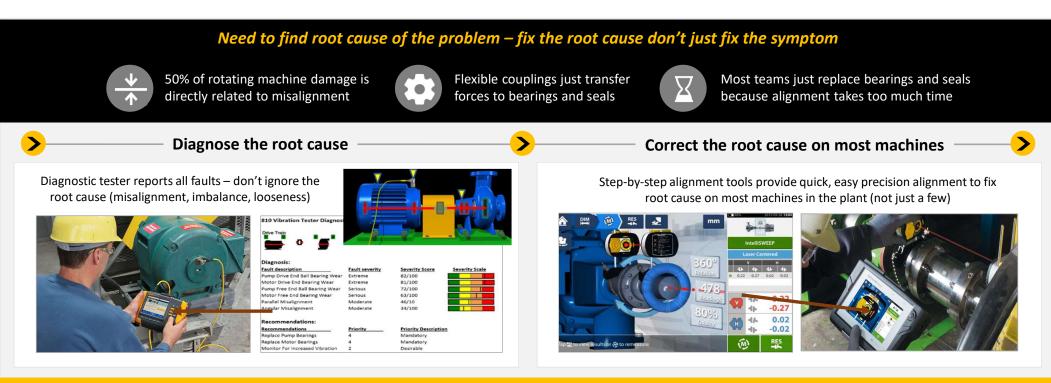
Agenda

- Root Cause Analysis fix it once, not again and again
- Expected Failure Modes what tools/technologies do I start with? It depends . . .

Asset criticality – what tools/technologies do I start with? It depends . . . Why many teams use predictive tools in a troubleshooting mode?

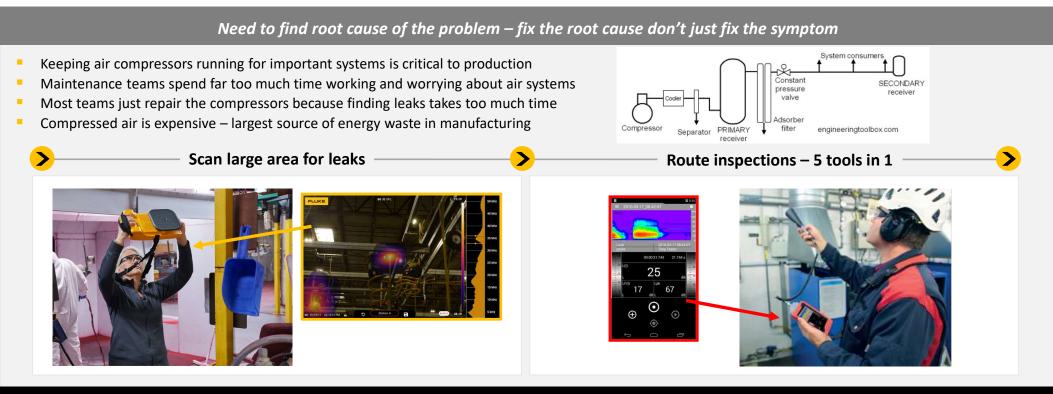
What are the simple steps of Total Condition Maintenance and how can Vibration Analysis find the most common mechanical faults?

Why many teams struggle to start a Reliability program and how can we learn from the few teams that have succeeded?



Root Cause Analysis

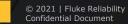
Why do teams keep replacing the same bearings and seals?


"We electricians would replace the motor bearings and mechanics would replace the pump bearings and seals, and we'd slap it all back together. In a few months we would do it all over again. Then we learned to perform precision shaft alignments, and the bearings would last for years and years." Maintenance Supervisor from US Navy

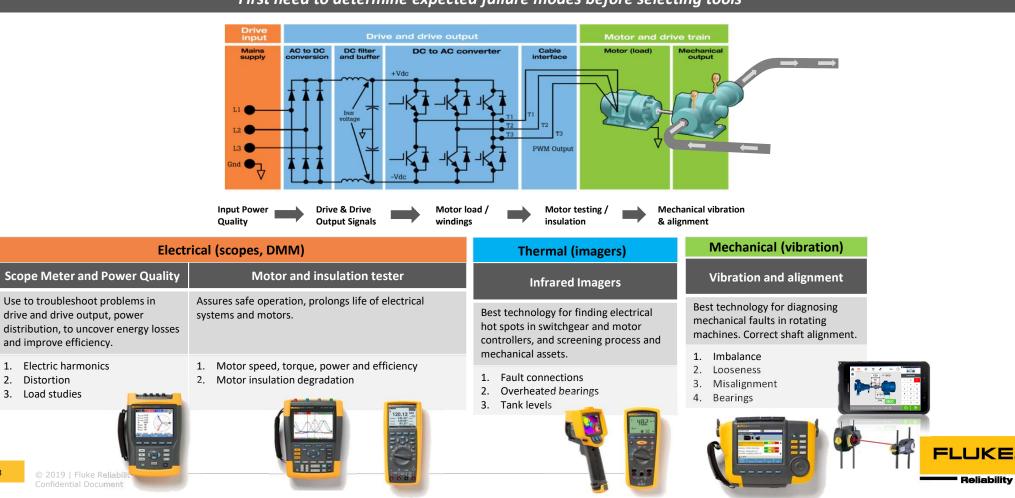
Reliability

© 2019 | Fluke Reliability Solutions Confidential Document

Example: Why do teams keep worrying about air compressors?



"A 96kW compressor runs 24/7 to compensate for leaks. That's \$100K/year" Maintenance Manager from Machinery manufacturer, WA,USA


© 2019 | Fluke Reliability Solutions Confidential Document

Failure Modes

FLUKE.

Using failure modes to drive inspection method

First need to determine expected failure modes before selecting tools

Expected failure modes

Write down some of the failure modes that you typically run into at your facility

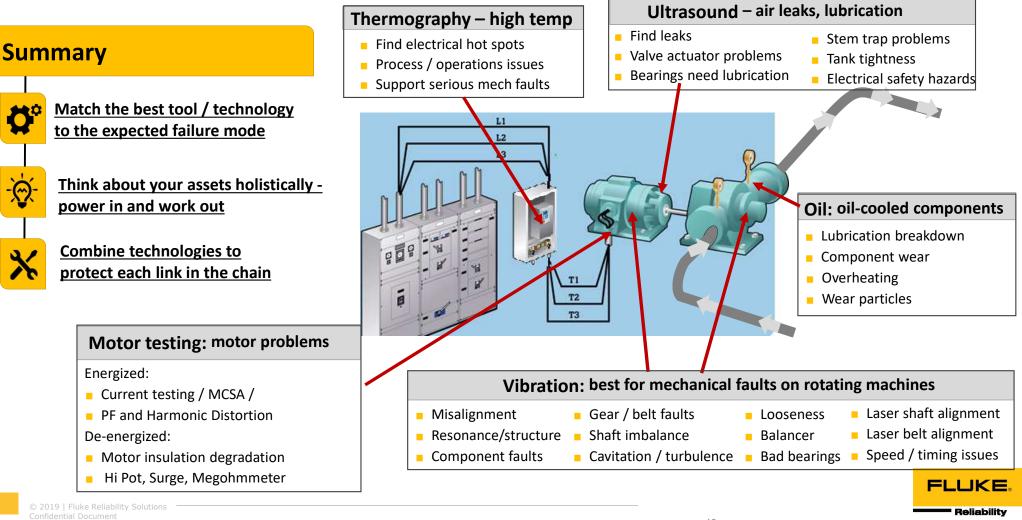
Write down which technologies can help to identify these failure modes

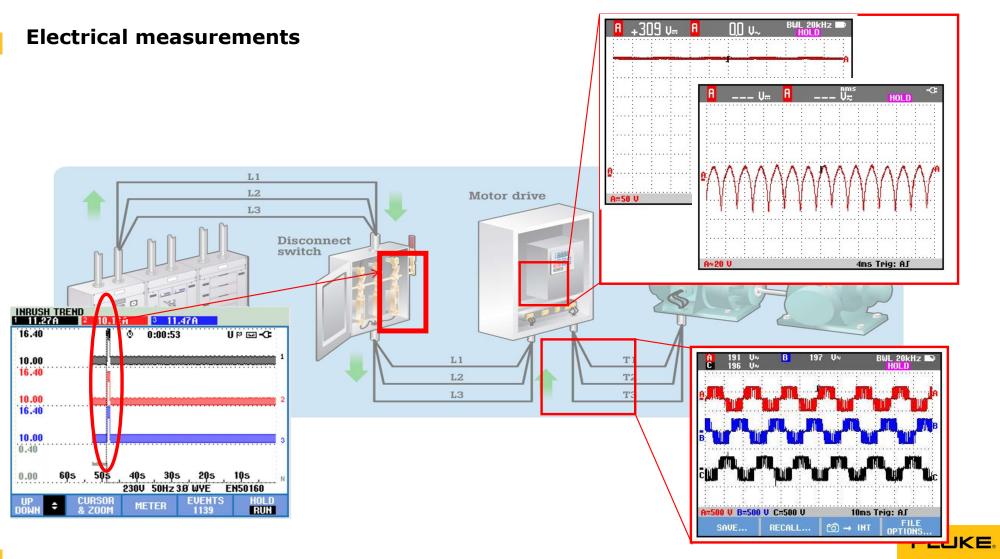
9

Write down what are the corrective actions for each of these failure modes

Some typical failure modes found by others in the industry:

E	xpected fa	ilure modes			B			C
	Asset type	Failure Modes	Technology suggested					Correction
			Oil Analysis	Ultrasound	Vibration	Motor testing	Thermography	
	Rotating machines motors, pumps, fans, compressors, blowers, gearboxes, belts turbines, engines, generators, paper rolls, machine tools, mills, hammers, planetary gears, etc.	Bearing early warning		Lubrication	High Inequencies			Grease bearing
		Bearing wearing (1-3)			Mid-high frequencies			Wait / schedule
		Bearing late stage (4)			Low frequencies		Thermal supports whe	Replace bearing
		Shaft imbalance			Low frequencies		Thermal supports whe	Balance / oveha
		Misalignment - shaft/belt			Low frequencies		Thermal supports whe	Alignment tool
T		Looseness - rotating/non-rotating	Match tech	nology:	Low-mid frequencies		Thermal supports whe	Overhaul unit
		Belt wear problems		Best practice	Low-high frequencies		Thermal supports whe	Replace belt(s
Jar		Pump/fan/compressor faults		Supports other	Low-mid frequencies		Thermal supports vibe	Troubleshoot/rep
Mechanica		Gear/foundation faults			Low-mid frequencies	5	Thermal supports vibe	Troubleshoot/rep
Σ		Cavitation/turbulence/process		/	Low-mid frequencies		Thermal supports vibe	Troubleshoot/rep
		Resonance/structure problems			Low-mid frequencies		Thermal supports vibe	Troubleshoot/rep
		Low speed shaft problems		Mechanical 🖌	Low hequencies		Thermal supports vibe	Troubleshoot/rep
	Oil cooled / lubricated	Lubrication problem	Oil lab tests	Nechanical		1		Replace oil
		Contaminants in oil	Oil lab tests					Replace oil
		Condition Monitoring	Wear Particle Analysis					Repair machin
va	Air systems	Air / gas leaks		Leaks		0	Temperature change	Correct leak
Se	Steam traps	Stuck / faulty traps		Steam			Temperature change	Overhaul trap
rocess	Valves	Valve actuator problems		Valves			Temperature change	Troubleshoot/rep
Ξ.	Tanks	Tank levels - blockage, sludge		Tightess			Thermal - tank levels	Troubleshoot/rep
	Power lines, drives,	Electrical safety hazards		Electrical - warning			Thermal - warning	De-enegrize firs
	switchgear, controllers	Power Quality				Motor testing - PQ		Correct problem
ectrical	Electric motors	Power Circuit				Cicuit faults	Thermal - electrical	Repair fault
8		Insulation				Insulation breakdown		Repair motor
Elec		Rotor			Rotor bar - MCA	Rotor faults		Repair motor
-		Stator				Stator faults	Temperature change	Repair motor
		Air gap				Air gap faults		Repair motor

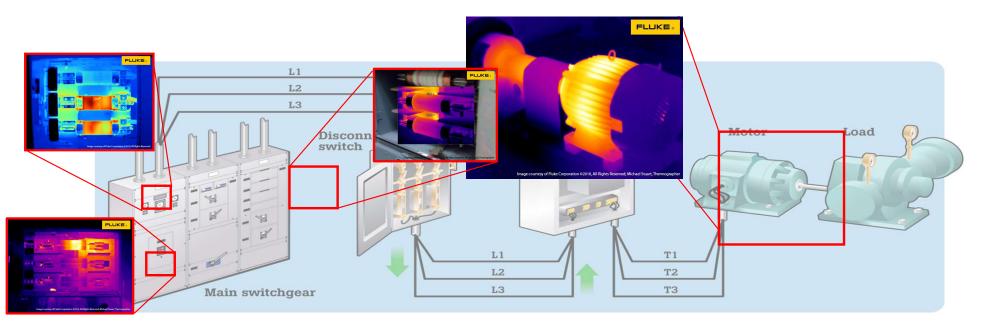

*Fluke Reliability experts can help you create a list of the Expected Failure Modes found in your facility



Reliability

© 2019 | Fluke Reliability Solutions Confidential Document

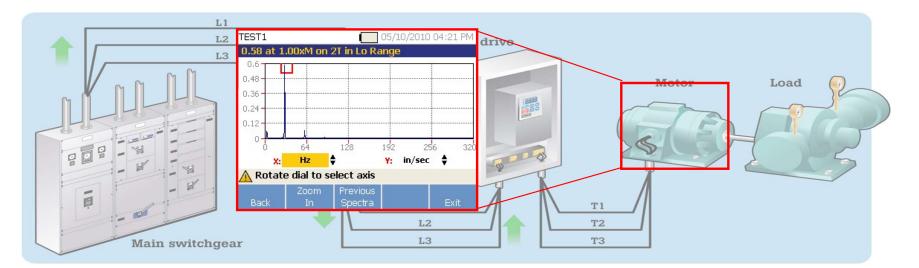
Expected failure modes – Best Practices for each technology



© 2019 | Fluke Reliability Solutions — Confidential Document

11

Reliability


Thermal measurements

- Use a thermal camera to scan the component and look for irregular and non-uniform thermal patterns or anomalies such as:
- Electrical Power quality issues, harmonics, current unbalance, or even high resistance.
- **Mechanical** Uneven heating/cooling, bearing, coupling, gearbox or even belt or chain drive issues.

Mechanical measurements

• Forces from the <u>Imbalance</u> show up on one shaft only. In this case, the motor shaft.

POLL QUESTION

P

Thermography

your facility?

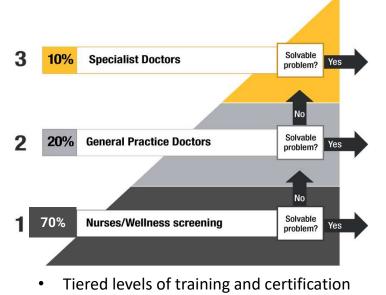
Which of these measurements do you use to assess machine health at

(Click all that apply)

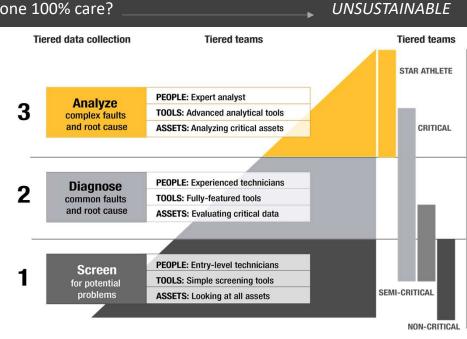
- Vibration
- Oil Analysis
- Ultrasound
- Other

© 2019 | Fluke Reliability Solutions Confidential Document

Asset Criticality



The criticality dilemma – a healthcare parallel


Everyone is EQUALLY important AND resources are limited. What to do?

- 1) Create a cut-line and only serve the critical people?
- 2) Build-up the vast resources needed to give everyone 100% care?

- Tiered levels of workers
- Tiered volume of visits / inspections
- Tiered amount of time spent on each person

16

Condition-based <u>screening</u> helps relieve workload at each level of care

UNACCEPTABLE

Common tools and strategies (reactive, troubleshooting, proactive, etc.)

Different assets require a different mix of technologies - Mechanical / Electrical / Thermal

Screening tools - thermal imagers, vibration meters, vibration sensors

Trend graphs / scan images – look for change of potential problems

Troubleshooting tools - electrical scopes, digital multi-meters, insulation testers

Analyze data – look for changes / troubleshoot of potential causes

17

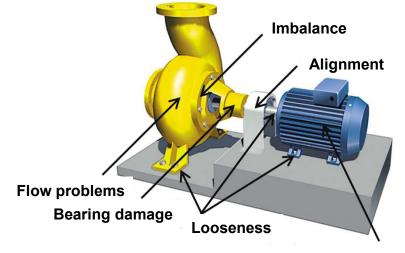
Predictive tools - vibration tester, vibration analyzer, corrective tools, vibration sensors

Analyze results – evaluate faults and severity, recommend repair actions

© 2019 | Fluke Reliability Solutions Confidential Document

Why do many teams often revert back to using predictive tools in a troubleshooting mode?

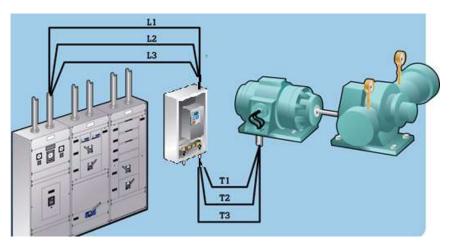
Common problem: a lack of resources and time


- Reliability

Why start with vibration?

- Thermography (IR)
- Ultrasonic
- Electrical / Current Analysis
- Oil Analysis
- Vibration Measurements

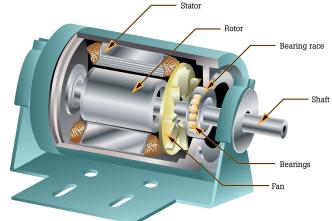
(80% of all machine faults can be detected with vibration analysis)



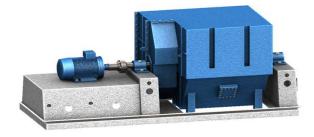
Broken Rotorbars

NOTE: Vibration faults have directionality

Motor fundamentals – both electrical and mechanical faults



Drive trains


- Direct drive
- Coupled
- Belt drive
- Gear drive

Driven units

- Pumps
- Fans
- Blowers
- Compressors

© 2019 | Fluke Reliability Solutions Confidential Document

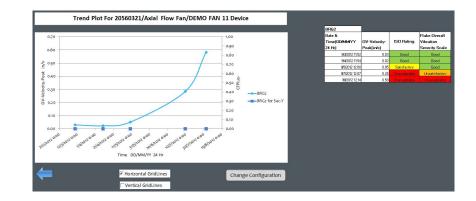
Total Condition Maintenance

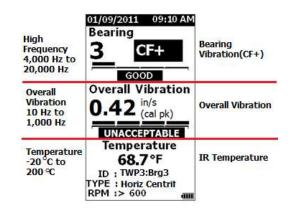
DIAGNOSE CORRECT SCREEN **VERIFY AND REPORT** 805 FC 805 FC 820-2 LED DIAGN **Vibration Meter Vibration Meter** erall Vibratio Stroboscope • 0.42 (cal pk) No faults found **810 Vibration Tester** ShaftAlignment Touch FLUKE FLUKE 🏦 🛄 🛞 RES (11 27/01/2010 03 23 754) 3 mm 0 150 01500 റ 75 Serkus: Motor Free End **810 Vibration Tester** 5 6 **Bearing Wear** 3.85. 0.85. Moderate: Pump Drive End 2 3 22.8 A 1 of 4 0 π 22.8 -

Total Condition Maintenance - 4 simple steps

Fully automated tools for common faults on standard machines by techs with no advanced training

© 2019 | Fluke Reliability Solutions


Interpreting screening measurements


Step 1 - SCREEN

- Portable tools
- Wireless sensors

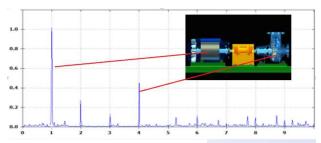
- Trend levels to determine if healthy or not
- Screen machine health using ISO levels based on 4 general size categories or 37 machine specific categories

Send readings wirelessly to your smart phone and the cloud to stay in contact with your entire team without leaving the field. Make decisions faster.

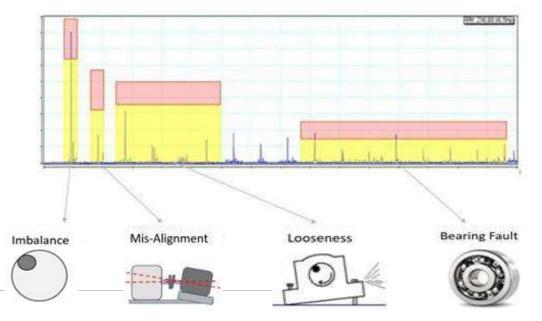
© 2019 | Fluke Reliability Solution Confidential Document

Interpreting vibration measurements

Step 2 - DIAGNOSE



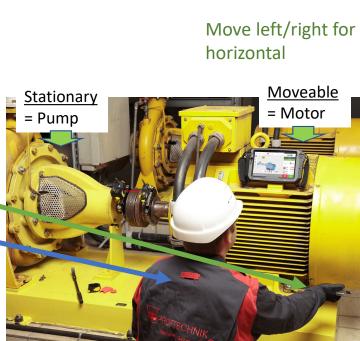
- 1. Identify vibration peaks as they relate to a source component on the machine.
- 2. Look for patterns in the data based on vibration rules.
- 3. Measure the amplitude of the vibration peak to determine the severity of the fault.


4 most common faults:

- 1. Imbalance
- 2. Misalignment
- 3. Looseness
- 4. Roller Bearings

FLUKE

Reliability



Correcting misalignment

Step 3 - CORRECT

Add/remove shims

for vertical

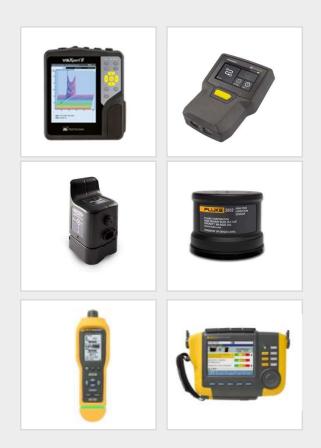
© 2019 | Fluke Reliability Solutions Confidential Document

Questions to consider for which tools are best for you

Which of my machines would be best served with a handheld vibration tool and which would be best with a wired or wireless vibration sensor?

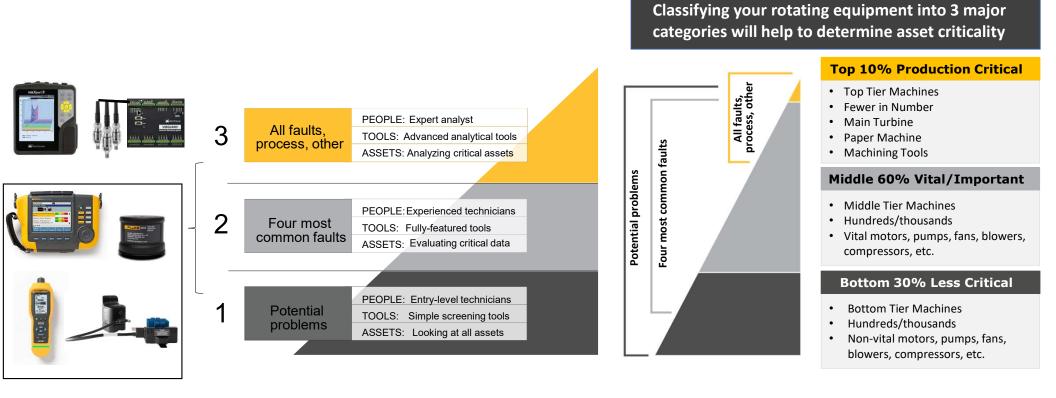
• An asset criticality assessment would help

Does my super critical machine warrant continuous monitoring with high-resolution data for sophisticated analysis of more than routine faults?


• High performing wired sensors are designed to measure vibration data and can provide high-resolution data

What infrastructure needs to be in place in my facility for the machine to operate?

- Wireless sensors may require network connections
- Wired sensors may require tethered connection via the ethernet to ensure no loss of data


Where does my data need to integrate with one of our systems to be effective? What data needs to be sent? What actions should be triggered in those systems?

Which machines warrant the cost of individual sensors? Can those machines be monitored with handheld tools when a technician's time could be spent elsewhere?

EB1 Add a photo of the wired sensors, to flesh out the message Ellis, Barbara, 8/12/2021

What are the best tools for your needs

Building a Reliability Program

Why many teams struggle?

Predictive equipment vendors have been developing and improving tools / software

So why are most companies (in almost all industries) still mainly using reactive and preventive methods?

Today's tools are the most advanced, and training has never been easier, but the problem is always time and resources.

How do we grow a reliability program ... when we are 100% busy?

We have no time to collect/analyze data and generate reports.

How do we make the best decisions ... when we have incomplete information?

We don't have time to conduct all the necessary routes, nor can we have access to all machines

How do we monitor all critical assets ... with limited resources?

We must allocate/balance resources needed for planned/calendarbased maintenance, repairs, and emergencies, etc.

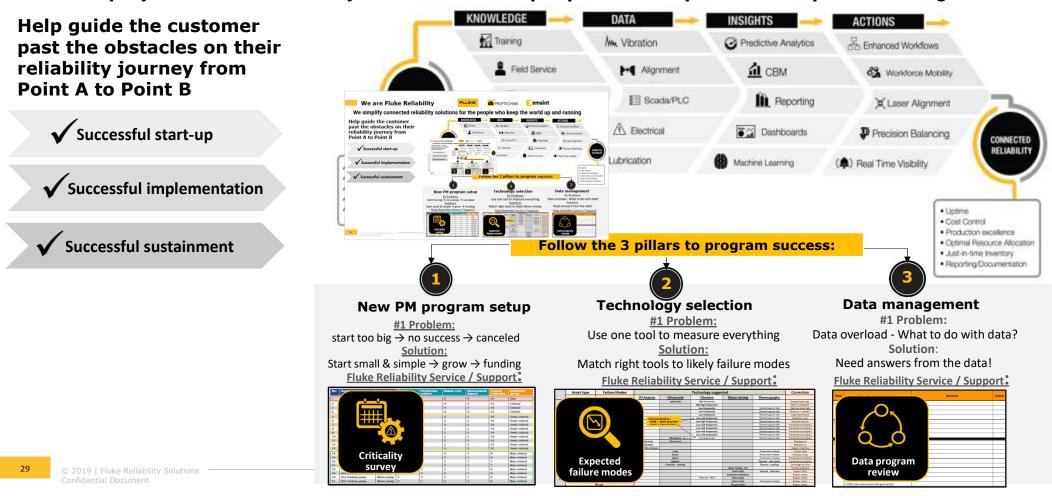
How a few teams succeed?

Reliability Best Practices—four important cornerstones:

- Learn from successful customers: start small and grow; select the right tool based on failures; get answers, not just data, and share with others on team
- 2. Evaluate your plant specifics: asset criticality, failure modes, risks to uptime, needs, etc.
- 3. Assess your company's resources, goals, success metrics, plan for implementation, etc.
- 4. Partner with a reliability consultant—get support to transition from goals to results

1

2


EB2

We are Fluke Reliability

FLUKE.

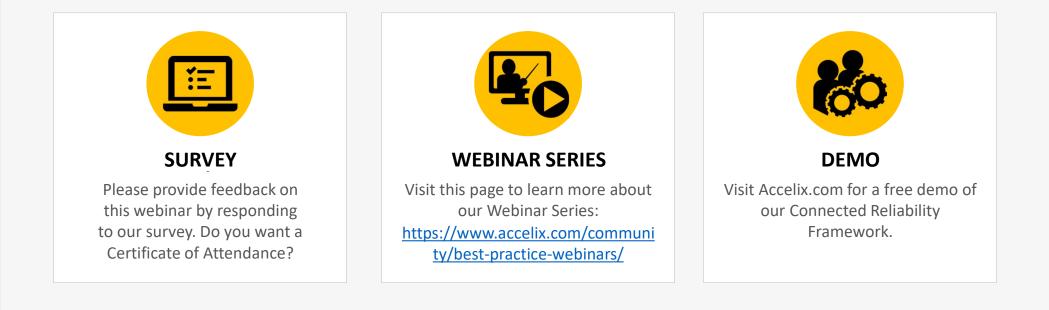
db PRUFTECHNIK Cemaint

We simplify connected reliability solutions for the people who keep the world up and running

EB2 split this slide into two, Our chevron grid, and then the 3 pillars. Ellis, Barbara, 8/12/2021

Thank you!

John Bernet


John.Bernet@Fluke.com Application Specialist

Fluke Reliability

© 2019 | Fluke Reliability Solutions Confidential Document

To learn more about Accelix and our Webinar Series

